# PHENIX RESULTS ON LOW-MASS DILEPTONS IN AU+AU COLLISIONS WITH THE HADRON BLIND DETECTOR



Mihael Makek (University of Zagreb) for the PHENIX Collaboration



#### Outline

- Introduction
- The Hadron Blind Detector
- Analysis
  - Electron identification
  - Background subtraction
  - Cocktail of hadronic sources
- Results
- Comparison to model
- Summary

#### Introduction





- In RHIC Run-4 PHENIX observed a large e<sup>+</sup>e<sup>-</sup> enhancement in the low mass region
  - Could not be explained by the models
- STAR observed much smaller enhancement (RHIC Run-10) PRL113 022301 (2014)
- A new PHENIX measurement in RHIC Run-10 with the Hadron Blind Detector to:
  - Reduce the hadron contamination
  - Improve the signal sensitivity

#### The Hadron Blind Detector



- Close
  pair
  pair
- Cherenkov detector using GEMs with Csl photocathode and CF<sub>4</sub> in a windowless configuration
  - Provides hadron rejection
  - Adds to elD capabilites
  - Suppresses bckg.  $e^+e^-$  pairs from  $\pi^0$  Dalitz and  $\gamma$  conversions by their opening angle
  - Operates in magnetic field free region



NIM A646, 35-58 (2011)

arXiv:1509.04667

## Analysis

Au+Au collisions at  $\sqrt{s_{NN}}$ =200 GeV RHIC Run-10

#### **Electron identification**

Background subtraction





#### Electron identification with neural networks

- □ RICH
- EMCAL
- HBD
- TOF
  - EMCAL
  - TOFE



#### Electron identification with neural networks

- RICH
- EMCAL
- HBD
- TOF
  - EMCAL
  - TOFE



Total 14 eID parameters:

- Use as inputs to neural networks
- NNs trained and monitored by simulations

□ Achieve electron sample purity for all centralities ≥95%





## Analysis

Electron identification

**Background subtraction** 





#### Background subtraction

Strategy – subtract component by component:

Traditional approach:

- could not reproduce the shape of the like-sign foreground
- → essential elements missing

#### Background subtraction

Strategy – subtract component by component:

Traditional approach:

- > could not reproduce the shape of the like-sign foreground
- → essential elements missing
- New approach:

```
Total BG = mixed BG with flow modulation | combinatorial + jet pairs + cross-pairs + e-h pairs
```

## Mixed background with flow modulation



- Flow distorts the shape of the combinatorial background
- To correct for the flow effect, each mixed
   BG pair is weighted by an analytic factor:

$$w(\Delta \varphi) = 1 + 2 v_2(p_{T,1}) v_2(p_{T,2}) \cos(2\Delta \varphi)$$

- $\square$  Inclusive single electron  $v_2$  from the data
- The approach is verified by the simulation (plots on the left)
- The weighting method reproduces correctly the combinatorial background shape

## Cross-pairs and jet pairs



- Simulated with EXODUS:  $\pi^0 \rightarrow e^+e^-\gamma$ ,  $\pi^0 \rightarrow \gamma\gamma$  and  $\eta \rightarrow e^+e^-\gamma$ ,  $\eta \rightarrow \gamma\gamma$
- Normalization: absolute

## Cross-pairs and jet pairs



- Simulated with EXODUS:  $\pi^0 \rightarrow e^+e^-\gamma$ ,  $\pi^0 \rightarrow \gamma\gamma$  and  $\eta \rightarrow e^+e^-\gamma$ ,  $\eta \rightarrow \gamma\gamma$
- Normalization: absolute
- Simulated with PYTHIA (p+p jets)
- Normalization: absolute
  - Each ee pair scaled by:

$$N_{coll} * R_{AA} (p_T^{\alpha}) * I_{AA} (p_T^{b}, \Delta \phi)$$

- lacktriangle p<sub>T</sub> and  $\Delta \phi$  refer to primary particles
- lacksquare a the particle with the higher  $p_T$ , b the particle with the lower  $p_T$
- $\blacksquare$  R<sub>AA</sub> and I<sub>AA</sub> from PHENIX measurements



### e-h pairs



- RICH spherical mirror causes hit sharing of parallel tracks
- Direct e-h correlations, e.g. e<sup>+</sup>h<sup>-</sup>,
   can be detected by hit proximity
   and rejected
  - Indirect correlations, e.g. e<sup>-</sup>h<sup>-</sup>
    cannot be detected  $\rightarrow$  they are
    simulated and subtracted
  - Normalization: absoluteusing PHENIX dN/dy of pions

### Mixed background normalization

Like-sign mixed BG normalization:

- FG\_ = Cross\_ + Jet\_ + e-h\_ + bb\_ + nf\_ \* mixBG\_
- All correlated components calculated on absulute terms
- ${f nf}_{++}$  and  ${f nf}_{-}$  are determined as the fit parameters in the pair opening angle  $(\Delta\phi_0)$  region where the correlated backgrounds are smallest
- □ Unlike-sign normalization:  $\mathbf{nf}_{+-} = \sqrt{\mathbf{nf}_{++} \cdot \mathbf{nf}_{--}}$

## Quantitative understanding of the background

- Understanding of the background verified by the like-sign spectra
  - Correlated components absolutely normalized
  - Combinatorial background mixed background with flow modulations
- The ratio of the like-sign foreground to total background, for m<sub>ee</sub>>0.15 is flat at 1
- Excellent quantitative
   understanding of the background



## Analysis

Electron identification

Background subtraction





- Dielectron and Dalitz decay of mesons simulated with EXODUS
  - π<sup>0</sup> parametrized using modified Haggedorn function
  - Other mesons( η, ω, ρ, φ,  $J/\Psi$ ): use  $m_T$  scaling for the shape and meson to  $\pi^0$  ratio at high  $p_T$  for absolute normalization

- Dielectron and Dalitz decay of mesons simulated with EXODUS
  - π<sup>0</sup> parametrized using modified Haggedorn function
  - Double The Sons (η, ω, ρ, φ,  $J/\Psi$ ): use  $m_T$  scaling for the shape and meson to  $\pi^0$  ratio at high  $p_T$  for absolute normalization
- Semileptonic decays of open heavy flavor (c,b) simulated with PYTHIA and MC@NLO
  - Uncertainty in the charm cross-section and shape - PHENIX PRC 91, 014907 (2015)



- Dielectron and Dalitz decay of mesons simulated with EXODUS
  - π<sup>0</sup> parametrized using modified Haggedorn function
  - Other mesons( η, ω, ρ, φ, J/Ψ): use  $m_T$  scaling for the shape and meson to  $π^0$  ratio at high  $ρ_T$  for absolute normalization
- Semileptonic decays of open heavy flavor (c,b) simulated with PYTHIA and MC@NLO
  - Uncertainty in the charm cross-section and shape - PHENIX PRC 91, 014907 (2015)
  - → PYTHIA cocktail and MC@NLO cocktail
- Normalization
  - In  $m_{ee}$ <0.1 GeV/ $c^2$  and  $p_T/m_{ee}$ >5
  - Normalize to measured  $\pi^0 + \eta$  + direct  $\gamma$



arXiv:1509.04667

## Results





### Invariant mass spectra

#### Minimum bias



### Invariant mass spectra



## Integrated yields (LMR)

#### Low mass region



Data/cocktail in MB (±stat±syst± mod):

- ☐ Pythia: 2.3±0.4±0.4±0.2
- $\square$  MC@NLO: 1.7±0.3±0.3±0.2
- → Compatible with STAR results:

 $1.76\pm0.06\pm0.26\pm0.33$ 

PRC92 (2015)024912

## Integrated yields (IMR)

#### Intermediate mass region

Data/cocktail in MB (±stat±syst± mod): ®

- $\Box$  Pythia: 1.3±0.7±0.2±0.3
- $\blacksquare$  Random cc: 2.5±0.5±0.3±0.3
- → Room for an additional thermal component within uncertainties



## Invariant p<sub>T</sub> (Min. Bias)



Dielectron excess distributed over p<sub>T</sub>

## Comparison to model (Min. Bias)



- Dielectron excess well described by the model (R. Rapp):
  - In-medium  $\rho$  broadening due to scatter off baryons in hadrons gas
  - Little contribution from the QGP

## Comparison to model (centrality dependence)

Centrality dependence of the model consistent with

the data

Model yield scales with:

 $(dN_{ch}/dy)^{1.45}$ 

(R. Rapp)



## Summary

- PHENIX provided a new measurement of dielectron invariant yields in Au+Au collisions at 200 GeV
- The new analysis with the HBD
  - Purity of the electron sample ≥95%
  - Background described qualitatively and quantitatively to an excellent level
  - Cocktail: uncertainty in the charm contribution (PYTHIA vs. MC@NLO)

#### Results

- LMR: enhancement consistent with in-medium rho broadening
- IMR: room for a thermal source beyond the cocktail

## BACKUP

## PHENIX Time-of-flight

- Time-of-flight information implemented for improved hadron rejection
  - EMCal (PbSc)
    - 3/4 of acceptance
    - σ=450 ps
  - ToF East
    - $\sim 1/8$  of acceptance
    - $\sigma = 150 \text{ ps}$





#### Electron identification with neural networks

- Use reconstructed parameters from RICH, EMCAL, HBD, ToF as NN inputs
- Train and monitor NNs using simulations
- Use separate neural networks for:
  - Hadron rejection
  - Conversion rejection
  - HBD double hit rejection
- □ Achieve electron sample purity for all centralities ≥95%
- Was ~70% in Run-4 with 1D eID cuts in MB collisions

Example: hadron rejection NN for 0-10% centrality



#### Quantitative understanding of the background

- Understanding of the background verified by the like-sign spectra
- Correlated components absolutely normalized
- Combinatorial background mixed background with flow
- The ratio of the like-sign foreground to total background, for m<sub>ee</sub>>0.15 is flat at 1
- Very good quantitative
   understanding of the background



## Dielectron invariant $p_T$ (Min. Bias)



- Invariant p<sub>T</sub> yield in m<sub>ee</sub>:
  - $\Box$  0 0.1 GeV/c<sup>2</sup>
  - $\Box$  0.3 0.76 GeV/c<sup>2</sup>
  - $\Box$  1.2 2.8 GeV/c<sup>2</sup>

## Comparison to model (Min. Bias)



- Dielectron excess well described by the model (R. Rapp):
  - In-medium  $\rho$  broadening due to scatter off baryons in hadrons gas
  - Little contribution from the QGP

## Systematic uncertainties

#### □ For Minium bias collisions

| Component                                 | Uncertainty                            |
|-------------------------------------------|----------------------------------------|
| eID+occupancy                             | ± 4%                                   |
| Acceptance (time)                         | ± 8%                                   |
| Acceptance (data/MC)                      | ± 4%                                   |
| Combinat. backgr. $(0-5 \text{ GeV/c}^2)$ | $\pm$ 25% (at 0.6 GeV/c <sup>2</sup> ) |
| Residual yield (0-0.08 $GeV/c^2$ )        | - 5% (at 0.08 GeV/c²)                  |
| Residual yield (1-5 GeV/c²)               | - 15% (at 1.0 GeV/c²)                  |

#### Comparison to previous PHENIX analysis

- □ Hadron contamination: was 30%, now 5% in MB
- □ **Signal sensitivity**: a factor of  $\sim$ 3.5 improvement in 0.15-0.75 GeV/c<sup>2</sup>
- Pair cuts: now stronger pair cuts fully remove detector correlations
- Flow: now included in the shape of the mixed BG
- e-h pairs: now subtracted
- Jets: oposite jets component now explicitly subtracted
- Background subtraction: all correlated components calculated and subtracted on absoulte terms

## Parallel analysis

- Independent analysis to provide a consistency check
- Key differences are:
  - Different HBD reconstruction algorithm
  - eID with 1D cuts
  - Normalization of background components by simulateous fit to the like-sign spectra
- Features:
  - Electron purity  $\sim 85\%$  in 0-10% cent.
  - Signal sensitivity in LMR ~0.5 compared to than the main analysis
- Result: consistent with the main analysis

